Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.166
Filtrar
1.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507485

RESUMO

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canais de Cálcio Tipo L/análise , Canais de Cálcio Tipo L/metabolismo , Retículo Sarcoplasmático/metabolismo , Contração Muscular/fisiologia
2.
J Membr Biol ; 257(1-2): 37-50, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460011

RESUMO

In skeletal muscle, the Ca2+ release flux elicited by a voltage clamp pulse rises to an early peak that inactivates rapidly to a much lower steady level. Using a double pulse protocol the fast inactivation follows an arithmetic rule: if the conditioning depolarization is less than or equal to the test depolarization, then decay (peak minus steady level) in the conditioning release is approximately equal to suppression (unconditioned minus conditioned peak) of the test release. This is due to quantal activation by voltage, analogous to the quantal activation of IP3 receptor channels. Two mechanisms are possible. One is the existence of subsets of channels with different sensitivities to voltage. The other is that the clusters of Ca2+-gated Ryanodine Receptor (RyR) ß in the parajunctional terminal cisternae might constitute the quantal units. These Ca2+-gated channels are activated by the release of Ca2+ through the voltage-gated RyR α channels. If the RyR ß were at the basis of quantal release, it should be modified by strong inhibition of the primary voltage-gated release. This was attained in two ways, by sarcoplasmic reticulum (SR) Ca2+ depletion and by voltage-dependent inactivation. Both procedures reduced global Ca2+ release flux, but SR Ca2+ depletion reduced the single RyR current as well. The effect of both interventions on the quantal properties of Ca2+ release in frog skeletal muscle fibers were studied under voltage clamp. The quantal properties of release were preserved regardless of the inhibitory maneuver applied. These findings put a limit on the role of the Ca2+-activated component of release in generating quantal activation.


Assuntos
Músculo Esquelético , Retículo Sarcoplasmático , Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Sinalização do Cálcio , Cálcio/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396828

RESUMO

The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.


Assuntos
Doenças Musculares , Retículo Sarcoplasmático , Camundongos , Masculino , Animais , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Envelhecimento/metabolismo , Doenças Musculares/metabolismo
4.
J Lipid Res ; 65(3): 100519, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354857

RESUMO

Metabolic syndrome affects more than one in three adults and is associated with increased risk of diabetes, cardiovascular disease, and all-cause mortality. Muscle insulin resistance is a major contributor to the development of the metabolic syndrome. Studies in mice have linked skeletal muscle sarcoplasmic reticulum (SR) phospholipid composition to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and insulin sensitivity. To determine if the presence of metabolic syndrome alters specific phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in human SR, we compared SR phospholipid composition in skeletal muscle from sedentary subjects with metabolic syndrome and sedentary control subjects without metabolic syndrome. Both total PC and total PE were significantly decreased in skeletal muscle SR of sedentary metabolic syndrome patients compared with sedentary controls, particularly in female participants, but there was no difference in the PC:PE ratio between groups. Total SR PC levels, but not total SR PE levels or PC:PE ratio, were significantly negatively correlated with BMI, waist circumference, total fat, visceral adipose tissue, triglycerides, fasting insulin, and homeostatic model assessment for insulin resistance. These findings are consistent with the existence of a relationship between skeletal muscle SR PC content and insulin resistance in humans.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Adulto , Humanos , Feminino , Animais , Camundongos , Retículo Sarcoplasmático/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos/metabolismo , Fosfatidilcolinas/metabolismo
5.
Cell Calcium ; 119: 102852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412581

RESUMO

In skeletal muscle (SM), inward Ca2+-currents have no apparent role in excitation-contraction coupling (e-c coupling), however the Ca2+-channel blocker can affect twitch and tetanic muscle in mammalian SM. Experiments were conducted to study how diltiazem (DLZ) facilitates e-c coupling and inhibits contraction. 1) In complete Extensor Digitorum Longus (EDL) muscle and single intact fibres, 0.03 mM DLZ causes twitch potentiation and decreases force during tetanic activity, with increased fatigue. 2) In split open fibres isolated from EDL fibres, DLZ inhibits sarcoplasmic reticulum (SR) Ca2+-loading in a dose-dependent manner and has a potentiating effect on caffeine-induced SR Ca2+-release. 3) In isolated light SR (LSR) vesicles, SERCA1 hydrolytic activity is not affected by DLZ up to 0.2 mM. However, ATP-dependent Ca2+-uptake was inhibited in a dose-dependent manner at a concentration where e-c coupling is changed. 4) The passive Ca2+-efflux from LSR was reduced by half with 0.03 mM diltiazem, indicating that SR leaking does not account for the decreased Ca2+-uptake. 5) The denaturation profile of the SERCA Ca2+-binding domain has lower thermal stability in the presence of DLZ in a concentration-dependent manner, having no effect on the nucleotide-binding domain. We conclude that the effect of DLZ on SM is exerted by crossing the sarcolemma and interacting directly with the SERCA Ca2+-binding domain, affecting SR Ca2+-loading during relaxation, which has a consequence on SM contractility. Diltiazem effect on SM could be utilized as a tool to understand SM e-c coupling and muscle fatigue.


Assuntos
Diltiazem , Músculo Esquelético , Animais , Diltiazem/farmacologia , Retículo Sarcoplasmático , Fadiga Muscular , Cafeína/farmacologia , Mamíferos , Contração Muscular , Cálcio/farmacologia
6.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329806

RESUMO

Severe dysfunction in cardiac muscle intracellular Ca2+ handling is a common pathway underlying heart failure. Here we used an inducible genetic model of severe Ca2+ cycling dysfunction by the targeted temporal gene ablation of the cardiac Ca2+ ATPase, SERCA2, in otherwise normal adult mice. In this model, in vivo heart performance was minimally affected initially, even though Serca2a protein was markedly reduced. The mechanism underlying the sustained in vivo heart performance in the weeks prior to complete heart pump failure and death is not clear and is important to understand. Studies were primarily focused on understanding how in vivo diastolic function could be relatively normal under conditions of marked Serca2a deficiency. Interestingly, data show increased cardiac troponin I (cTnI) serine 23/24 phosphorylation content in hearts upon Serca2a ablation in vivo. We report that hearts isolated from the Serca2-deficient mice retained near normal heart pump functional responses to ß-adrenergic stimulation. Unexpectedly, using genetic complementation models, in concert with inducible Serca2 ablation, data show that Serca2a-deficient hearts that also lacked the central ß-adrenergic signaling-dependent Serca2a negative regulator, phospholamban (PLN), had severe diastolic dysfunction that could still be corrected by ß-adrenergic stimulation. Notably, integrating a serines 23/24-to-alanine PKA-refractory sarcomere incorporated cTnI molecular switch complex in mice deficient in Serca2 showed blunting of ß-adrenergic stimulation-mediated enhanced diastolic heart performance. Taken together, these data provide evidence of a compensatory regulatory role of the myofilaments as a critical physiological bridging mechanism to aid in preserving heart diastolic performance in failing hearts with severe Ca2+ handling deficits.


Assuntos
Cálcio , Insuficiência Cardíaca , Animais , Camundongos , Cálcio/metabolismo , Miofibrilas/metabolismo , Retículo Sarcoplasmático/metabolismo , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Adrenérgicos/metabolismo
9.
J Membr Biol ; 257(1-2): 25-36, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285125

RESUMO

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Camundongos , Ratos , Humanos , Coelhos , Animais , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Ventrículos do Coração , Mamíferos/metabolismo , Cálcio/metabolismo
10.
Am J Physiol Cell Physiol ; 326(3): C795-C809, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223925

RESUMO

Mitsugumin 23 (MG23) has been identified as a ball-shaped cation channel in the sarcoplasmic reticulum (SR) but its physiological role remains unclear. This study aimed to examine the contribution of MG23 to Ca2+ storage function in skeletal muscle by using Mg23-knockout (Mg23-/-) mice. There was no difference in the isometric specific force of the extensor digitorum longus (EDL) and soleus (SOL) muscles between Mg23-/- and wild-type (Wt) mice. In Mg23-/- mice, the calsequestrin 2 content in the EDL muscle and SR Ca2+-ATPase 2 content in the SOL were increased. We have examined SR and myofibril functions using mechanically skinned fibers and determined their fiber types based on the response to Sr2+, which showed that Mg23-/- mice, compared with Wt, had: 1) elevated total Ca2+ content in the membranous components including SR, mitochondria, and transverse tubular system referred to as endogenous Ca2+ content, in both type I and II fibers of the EDL and SOL; 2) increased maximal Ca2+ content in both type I and II fibers of the EDL and SOL; 3) decreased SR Ca2+ leakage in type I fibers of the SOL; and 4) enhanced SR Ca2+ uptake in type I fibers of the SOL, although myofibril function was not different in both type I and II fibers of the SOL and EDL muscles. These results suggest that MG23 decreases SR Ca2+ storage in both type I and type II fibers, likely due to increased SR Ca2+ leakage.NEW & NOTEWORTHY The function of calcium storage within sarcoplasmic reticulum (SR) plays a pivotal role in influencing the health and disease states of skeletal muscle. In the present study, we demonstrated that mitsgumin 23, a novel non-selective cation channel, modifies SR Ca2+ storage in skeletal muscle fibers. These findings provide valuable insights into the physiological regulation of Ca2+ in skeletal muscle, offering significant potential for uncovering the mechanisms underlying muscle fatigue, muscle adaptation, and muscle diseases.


Assuntos
Músculo Esquelético , Retículo Sarcoplasmático , Animais , Camundongos , Cátions , Fadiga Muscular , Fibras Musculares Esqueléticas
11.
Circ Res ; 134(3): 252-265, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166470

RESUMO

BACKGROUND: Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS: Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS: These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.


Assuntos
Miocárdio , Retículo Sarcoplasmático , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Mamíferos , Camundongos Knockout , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
13.
Mol Cell Biochem ; 479(1): 85-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37036634

RESUMO

The importance of sarcoplasmic reticulum (SR) Ca2+-handling in heart has led to detailed understanding of Ca2+-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca2+-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Proteins from 20.0 µg of MV, MedSR, and HighSR protein were fractionated using SDS-PAGE, then trypsinized from 20 separate gel pieces, and analyzed by LC-MS/MS to determine protein content. From 62,000 individual peptide spectra obtained, we identified 1105 different proteins, of which 354 were enriched ≥ 2.0-fold in SR fractions compared to the crude membrane preparation. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca2+ leak co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins constituting other putative ER/SR subdomains also exhibited average Esub enrichment values (mean ± S.D.) that spanned the range of possible Esub values, suggesting that functional sets of proteins are localized to the same areas of the ER/SR membrane. We conclude that active Ca2+ loading of cardiac microsomes, reflecting the combined activities of Ca2+ uptake by SERCA, and Ca2+ leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.


Assuntos
Retículo Sarcoplasmático , Espectrometria de Massas em Tandem , Retículo Sarcoplasmático/metabolismo , Cromatografia Líquida , Retículo Endoplasmático/metabolismo , Microssomos/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Sinalização do Cálcio , Cálcio/metabolismo
14.
Cardiovasc Res ; 120(1): 44-55, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37890099

RESUMO

AIMS: CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. METHODS AND RESULTS: Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5-20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. CONCLUSION: Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cafeína/farmacologia , Cafeína/metabolismo , Cálcio/metabolismo , Fura-2/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
15.
Cell Calcium ; 117: 102819, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956535

RESUMO

Calcium is a universal intracellular messenger and proper Ca2+concentrations ([Ca2+]) both in the cytosol and in the lumen of cytoplasmic organelles are essential for cell functions. Ca2+ homeostasis is achieved by a delicate pump/leak balance both at the plasma membrane and at the endomembranes, and improper Ca2+ levels result in malfunction and disease. Selective intraorganellar Ca2+measurements are best achieved by using targeted genetically encoded Ca2+ indicators (GECIs) but to calibrate the luminal fluorescent signals into accurate [Ca2+] is challenging, especially in vivo, due to the difficulty to normalize and calibrate the fluorescent signal in various tissues or conditions. We report here a procedure to calibrate the ratiometric signal of GAP (GFP-Aequorin Protein) targeted to the endo-sarcoplasmic reticulum (ER/SR) into [Ca2+]ER/SR based on imaging of fluorescence after heating the tissue at 50-52 °C, since this value coincides with that obtained in the absence of Ca2+ (Rmin). Knowledge of the dynamic range (Rmax/Rmin) and the Ca2+-affinity (KD) of the indicator permits calculation of [Ca2+] by applying a simple algorithm. We have validated this procedure in vitro using several cell types (HeLa, HEK 293T and mouse astrocytes), as well as in vivo in Drosophila. Moreover, this methodology is applicable to other low Ca2+ affinity green and red GECIs.


Assuntos
Equorina , Organelas , Camundongos , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Calibragem , Organelas/metabolismo , Equorina/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
17.
J Mol Cell Cardiol ; 186: 107-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993093

RESUMO

In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two "modes" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Humanos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Acoplamento Excitação-Contração , Arritmias Cardíacas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
18.
Annu Rev Physiol ; 86: 123-147, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931168

RESUMO

In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.


Assuntos
Proteínas de Membrana , Retículo Sarcoplasmático , Humanos , Proteínas de Membrana/fisiologia , Membrana Celular/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
19.
Cardiovasc Res ; 120(3): 273-285, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38099489

RESUMO

AIMS: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon ß-adrenergic receptor (ß-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial ß2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of ß1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased ß2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION: These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Volume Sistólico
20.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119613, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918638

RESUMO

Myoregulin (MLN) is a protein that regulates the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) without affecting its affinity for Ca2+. MLN's residue Lys27 is located at a site where other SERCA regulators control Ca2+ affinity. Therefore, we conducted atomistic simulations and ATPase activity experiments to determine whether replacing Lys27 with asparagine, a conserved residue found in various muscle SERCA regulators, would enable MLN to modulate both the Ca2+ affinity and catalytic activity of SERCA. Our findings indicate that replacing Lys27 with Asn significantly enhances the inhibitory potency of MLN, but it does not affect SERCA's affinity for Ca2+. We suggest that the SERCA site modulating Ca2+ affinity also acts as a catalytic activity switch. Therefore, this site is a key element contributing to the functional divergence among homologous SERCA regulators. This study paves the way for future investigations to explore how biological function diverges during the evolution of the SERCA regulator family.


Assuntos
Asparagina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Asparagina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...